Введение в резонансную аналитическую динамику.

после оплаты (24/7)
(для всех устройств)
(в т.ч. для Apple и Android)
Основной математический объект, изучаемый в монографии, — это регулярные по малому параметру многочастотные системы обыкновенных дифференциальных уравнений с медленными и быстрыми фазовыми переменными, в которых возможны резонансные соотношения между основными частотами. Дана классификация резонансных систем, в основу которой положена идея о застревании или незастревании решения в окрестности резонансных точек, разработана конструктивная теория возмущений, использующая принцип усреднения (сглаживания), асимптотические представления в смысле Пуанкаре и итерационные варианты классического метода Ляпунова — Пуанкаре. В большинстве случаев удается построить приближенные решения многочастотных систем в аналитической или численно-аналитической форме с любой заданной точностью относительно малого параметра. Изложены также некоторые общие вопросы компьютерных технологий асимптотической теории дифференциальных уравнений и конструктивные методы построения первого и высшего приближений. Эффективность разработанной асимптотической теории иллюстрируется на некоторых задачах прикладного нелинейного анализа. Для специалистов в области нелинейного анализа, математического моделирования и вычислительной математики.
LF/339914784/R
Характеристики
- ФИО Автора
- Гребеников Е.А.
Митрополъский Ю.А.
Рябов Ю.А. - Язык
- Русский
- ISBN
- 9785803700357
- Дата выхода
- 1999