Liquid biofuel production

після оплати (24/7)
(для всіх пристроїв)
(в т.ч. для Apple та Android)
1 Process Engineering Biofuel Production 1Opubo Gbanaye Benebo1.1 Biofuel Production Background 11.1.1 General Limitations 21.1.2 Limitation of Cashcrop Raw Material 41.1.3 Limitations of Algae Raw Materials Remediation 51.1.4 Limitations Remediation 51.2 Process Engineering Liquid Biofuel Production 81.2.1 Algae Cultivation Assessment 81.2.2 Algal Cultivation Inefficiencies Remediation 111.2.3 Technology Development 121.2.4 Lessons from the Algae Biofuel Industry Collapse 131.2.5 Process Development Norms 141.2.6 Research Team 151.2.7 Alga Cultivation General Issues 161.2.8 Biofuel Process Technology 171.3 Algal Cultivation Process Technology 181.3.1 Cellular Reaction Kinetics Analysis 191.3.2 Cultivation Bench-Scale Model Design 201.3.3 Cultivation Bioreactor 211.3.4 Concentrator Harvesting of Cells 211.3.5 Cell Rupture Technology 211.3.6 BioFeedstock Separation Process 221.3.7 Bench-Scale Cultivation Process Technology 231.3.8 Process Technology Financial Viability Design 231.3.9 Process Technology Sustainability Engineering 241.3.10 Process Technology Optimization Engineering 251.3.11 Base Cultivation Process Technology 261.4 Algal Biomass Biorefinery Process Engineering 261.4.1 Resourcing Algal Biomass 271.4.2 Microbes Nutrients-Feed Production 281.4.3 Fermentation Process Technology 281.4.4 Biodiesel Process Technology 291.4.5 Biorefinery Process Technology 291.4.6 Engineering Cost Impact Analysis 30Acknowledgment 32About the Author 33References 342 A Renewable Source of Hydrocarbons and High Value Co-Products from Algal Biomass 35Abhishek Walia, Samriti Sharma and Saruchi2.1 Introduction 362.2 Algal Biomass Production 382.2.1 Growth Conditions 382.2.1.1 Temperature 382.2.1.2 Light Intensity 382.2.1.3 pH 392.2.1.4 Aeration and Mixing 392.2.1.5 Salinity 392.2.2 Photoautotrophic Production 402.2.2.1 Open Pond Production Pathway 402.2.2.2 Closed Photobioreactor Systems 402.2.3 Harvesting and Dewatering of Algal Biomass 422.2.3.1 Flocculation 422.2.3.2 Chemical Flocculation 422.2.3.3 Electroflocculation 422.2.3.4 Biofloculation 432.2.3.5 Magnetic Separation of Algae 432.2.3.6 Dissolved Air Flotation 432.2.3.7 Filtration 432.2.3.8 Centrifugation 432.2.3.9 Attachment/Biofilm-Based Systems 442.3 Developments in Algal Cultivation for Fuel By Using Different Production System 442.3.1 Stirred Tank Photobioreactor 452.3.2 Vertical Tubular Photobioreactors 452.3.2.1 Bubble Column 452.3.2.2 Airlift Reactors 462.3.3 Horizontal Tubular Photobioreactors 462.3.4 Flat Panel Photobioreactor 472.4 Algal Biofuels -- Feedstock of the Future 482.4.1 Biohydrogen 492.4.2 Biobutanol 492.4.3 Jet Fuel 502.4.4 Biogas 502.4.5 Bioethanol 512.5 Biofuel Pathways 512.5.1 Thermo-Chemical Conversion 522.5.2 Biochemical Conversion 522.5.3 Alcoholic Fermentation 532.5.4 Biophotolysis 532.6 High Value Co-Products from Algal Biomass 532.6.1 Algae in Human Nutrition 542.6.2 Algae in Animal and Aquaculture Feed 542.6.3 Algae as Fertilizer 552.6.4 Algae as Recombinant Protein 562.6.5 Algae as Polyunsaturated Fatty Acids (PUFAs) 562.7 Microalgae in Wastewater Treatment 572.8 Economics of Algae Cultivation 582.9 Problems and Potential of Alga-Culture 612.10 Conclusion 63References 643 Waste Biomass Utilization for Liquid Fuels: Challenges & Solution 73Sourish Bhattacharya, Surajbhan Sevda, Pooja Bachani, Vamsi Bharadwaj and Sandhya Mishra3.1 Introduction 743.2 Waste Biomass and its Types 753.3 Major Waste Biomass Conversion Routes 763.4 Metabolic Engineering in Yeast for Accumulation of C5Sugars along with C6 Sugars 773.5 Genetic Engineering for Improved Xylose Fermentation by Yeasts 773.6 Biofuel from Microalgae through Mixotrophic Approach Utilizing Lignocellulosic Hydrolysate 803.7 Conclusion 82References 834 Biofuel Production from Lignocellulosic Feedstock via Thermochemical Routes 89Long T. Duong, Phuet Prasertcharoensuk and Anh N. Phan4.1 Introduction 894.2 Fast Pyrolysis 924.2.1 Principles 924.2.2 Reactors 924.2.2.1 Bubbling Fluid Bed 944.2.2.2 Circulating Fluid Bed 944.2.2.3 Rotating Cone 1004.2.2.4 Ablative Pyrolysis 1004.2.2.5 Screw Reactor 1014.2.2.6 Other Reaction Systems 1024.2.3 Bio-Oil Composition and Properties 1034.2.4 Factors Affecting on Biomass Pyrolysis 1054.2.4.1 Feedstock 1054.2.4.2 Biomass Pre-Treatment 1054.2.4.3 Temperature and Carrier Gas Flow Rate 1104.3 Bio-Oil Upgrading 1114.3.1 Hydrodeoxygenation 1114.3.2 Catalytic Cracking 1144.3.3 Fast Hydropyrolysis 1164.3.4 Cold Plasma 1174.4 Gasification 1264.4.1 Types of Gasifier 1304.4.1.1 Fixed Bed Gasifier 1304.4.1.2 Fluidized Bed Gasifier 1354.4.1.3 Entrained Flow Gasifier 1374.4.2 Influence of Operating Parameters on Gasification Process 1384.4.2.1 Equivalence Ratio 1384.4.2.2 Steam to Biomass Ratio 1384.4.2.3 Gasifying Agents 1394.4.2.4 Gasification Temperature 1394.5 Fischer-Tropsch Synthesis 1404.5.1 Fischer-Tropsch Reactors 1404.5.1.1 Multi-Tubular Fixed Bed 1414.5.1.2 Slurry Bubble Column 1414.5.1.3 Fluidized Bed 1434.5.2 Catalysts 1434.5.3 Influence of Operating Parameters on Fisher-Tropsch Synthesis 1454.6 Summary 147References 1485 Exploring the Potential of Carbohydrate Rich Algal Biomass as Feedstock for Bioethanol Production 167Jaskiran Kaur and Yogalakshmi K.N.5.1 Introduction 1685.2 Microalgae and Macroalgae as Bioethanol Feedstock 1695.3 Process Involved for Production of Bioethanol from Algae 1765.4 Algal Biomass Cultivation 1775.4.1 Open Pond Systems 1775.4.2 Closed Photobioreactors (PBR) 1795.5 Pretreatment of Algal Biomass 1805.5.1 Physical Pretreatment 1815.5.2 Chemical Pretreatment 1825.5.3 Biological Pretreatment 1835.6 Fermentation of Algal Hydrolysate 1835.7 Distillation 1845.8 Manipulation of Algal Biomass 1855.9 Pros and Cons of Bioethanol Production from Algae 1865.10 Conclusions 187References 1876 Development of Acid-Base-Enzyme Pretreatment and Hydrolysis of Palm Oil Mill Effluent for Bioethanol Production 197Nibedita Deb, Md. Zahangir Alam, Maan Fahmi Rashid Al-khatib and Amal Elgharbawy6.1 Introduction 1986.2 Biomass Energy 2006.3 Palm Oil Mill Effluent (POME) 2016.4 Pome Characterization 2036.5 Pretreatment 2036.5.1 Physical and Physicochemical Pretreatment 2046.5.2 Chemical Pretreatment 2056.5.3 Biological Pretreatment 2066.6 Hydrolysis 2066.6.1 Concentrated Acid Hydrolysis 2066.6.2 Dilute Acid Hydrolysis 2076.6.3 Base Hydrolysis 207
LF/499315/R
Характеристики
- ФІО Автора
- Chaudhary
Gaurav
Lalit Kumar
Singh - Мова
- Англійська
- ISBN
- 9781119459866
- Дата виходу
- 2019