Variational Bayesian Learning Theory

Variational Bayesian Learning Theory

book type
0 Відгук(ів) 
LF/983515/R
Англійська
В наявності
202,50 грн
182,25 грн Збережіть 10%
  Моментальне завантаження 

після оплати (24/7)

  Широкий вибір форматів 

(для всіх пристроїв)

  Повна версія книги 

(в т.ч. для Apple та Android)

Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning.
LF/983515/R

Характеристики

ФІО Автора
K.
M.
Nakajima
S.
Sugiyama
Watanabe
Мова
Англійська
ISBN
9781107076150
Дата виходу
2019

Відгуки

Напишіть свій відгук

Variational Bayesian Learning Theory

Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, thi...

Напишіть свій відгук

15 книг цього ж автора

Товари з цієї категорії: