Index Theorem. 1

Index Theorem. 1

book type
0 Відгук(ів) 
LF/964228/R
Английский
Mikio Furuta
В наличии
157,50 грн
141,75 грн Сохранить 10%
  Моментальное скачивание 

после оплаты (24/7)

  Широкий выбор форматов 

(для всех устройств)

  Полная версия книги 

(в т.ч. для Apple и Android)

The Atiyah-Singer index theorem is a remarkable result that allows one to compute the space of solutions of a linear elliptic partial differential operator on a manifold in terms of purely topological data related to the manifold and the symbol of the operator. First proved by Atiyah and Singer in 1963, it marked the beginning of a completely new direction of research in mathematics with relations to differential geometry, partial differential equations, differential topology, K-theory, physics, and other areas. The author's main goal in this volume is to give a complete proof of the index theorem. The version of the proof he chooses to present is the one based on the localization theorem. The prerequisites include a first course in differential geometry, some linear algebra, and some facts about partial differential equations in Euclidean spaces.
LF/964228/R

Характеристики

ФИО Автора
Mikio Furuta
Язык
Английский
Серия
Translations of Mathematical Monographs 235
ISBN
9780821820971
Дата выхода
2007

Отзывы

Напишите свой отзыв

Index Theorem. 1

The Atiyah-Singer index theorem is a remarkable result that allows one to compute the space of solutions of a linear elliptic partial differential operator o...

Напишите свой отзыв

1 книга этого же автора

Товары из этой категории: