Lectures on K3 surfaces

after payment (24/7)
(for all gadgets)
(including for Apple and Android)
"K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi-Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the manyfacets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin-Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers."--
LF/415076202/R
Data sheet
- Name of the Author
- Daniel
Huybrechts - Language
- English
- Series
- Cambridge studies in advanced mathematics 158.
- ISBN
- 9781316594193
- Release date
- 2016