Measure and Integration

Measure and Integration

book type
0 Review(s) 
LF/936834230/R
English
In stock
грн157.50
грн141.75 Save 10%

  Instant download 

after payment (24/7)

  Wide range of formats 

(for all gadgets)

  Full book 

(including for Apple and Android)

The book is intended as a companion to a one semester introductory lecture course on measure and integration. After an introduction to abstract measure theory it proceeds to the construction of the Lebesgue measure and of Borel measures on locally compact Hausdorff spaces, Lpspaces and their dual spaces and elementary Hilbert space theory. Special features include the formulation of the Riesz Representation Theorem in terms of both inner and outer regularity, the proofs of the Marcinkiewicz Interpolation Theorem and the Calderon–Zygmund inequality as applications of Fubini’s theorem and Lebesgue differentiation, the treatment of the generalized Radon–Nikodym theorem due to Fremlin, and the existence proof for Haar measures. Three appendices deal with Urysohn’s Lemma, product topologies, and the inverse function theorem.The book assumes familiarity with first year analysis and linear algebra. It is suitable for second year undergraduate students of mathematics or anyone desiring an introduction to the concepts of measure and integration.Keywords: sigma-Algebra, Lebesgue monotone convergence, Caratheodory criterion, Lebesgue measure, Borel measure, Dieudonné’s measure, Riesz Representation Theorem, Alexandrov Double Arrow Space, Sorgenfrey Line, separability, Cauchy–Schwarz inequality, Jensen’s inequality, Egoroff’s theorem, Hardy’s inequality, absolutely continuous measure, truly continuous measure, singular measure, signed measure, Radon–Nikodym Theorem, Lebesgue Decomposition Theorem, Hahn Decomposition Theorem, Jordan Decomposition Theorem, Hardy–Littlewood maximal inequality, Vitali’s Covering Lemma, Lebesgue point, Lebesgue Differentiation Theorem, Banach-Zarecki Theorem, Vitali–Caratheodory Theorem, Cantor function, product sigma-algebra, Fubini’s Theorem, convolution, Young’s inequality, mollifier, Marcinciewicz interpolation, Poisson identity, Green’s formula, Calderon–Zygmund inequality, Haar measure, modular character.
LF/936834230/R

Data sheet

Name of the Author
Dietmar A. Salamon
Language
English
Series
Ems Textbooks in Mathematics
ISBN
9783037191590
Release date
2016

Reviews

Write your review

Measure and Integration

The book is intended as a companion to a one semester introductory lecture course on measure and integration. After an introduction to abstract measure theor...

Write your review

2 books by the same author:

Products from this category: